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ABSTRACT

This report makes available the computer program that
produces the proposed new FCC ground~wave propagation
prediction curves for the new band of standard broadcast
frequencies between 1605 and 1705 kHz. The curves are
include.d in recommendations to theU. S. Department of
State in preparation for an International Telecommunication
Union Radio Conference.

The history of the FCC curves is traced from the early
1930's, when the Federal Radio Commission and later the
FCC faced an intensifying need for technical inf<>rmation
concerning interference distances. A family of curves
satisfactorily meeting this need was published in 1940.
The FCC reexamined this matter recently in connection
with the planned expansion of the AM broadcast band, and
the resulting new curves are a precise repre~entation of
the mathematical theory.

Mathematical background is furnished so that the
computer program can be critically evaluated. This will
be particularly valuable to persons implementing the
program on other computers or adapting it for special
applications. Technical references are identified for
each of the formulas used by the program, and the
history of the development of mathematical methods is
outlined.
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MODERN METHODS FOR CALCULATING GROUND-WAVE FIELD STRENGTH
OVER A SMOOTH SPHERICAL EARTH

Introduction

This report makes available the computer program that was used to draw
the new FCC curves proposed for AM broadcast propagation :prediction in
the band 1605-1705 kHz. The program pr04ucesth~ theoretical value of
ground-wave radio field intensity at given"frequencies and distances and
for given electric ground constants. The program will reproduce tJte
particular family of curves published by the FCC [ll for use in the new
band and can be used as an alternative to reading values from the curves
themse 1ves. Answers can be obtained for a continuous range .of possible
ground constants including the particular set of constants that
determine the published family of curves.

The field strength values computed by this program are :precise
representations of the theory over a broad range of frequencies
including the existing AM band (535-1605 kHz). They are more accurate
than those presented in the old FCC curves which were published in 1940
and republished in 1954 with additions for low conductivity. It was not
unexpected that greater accuracy could be obtained. A Canadian report
[2] in 1963 called attention to discrepancies between theoretical
computations an4 the FCC curves. The Canadian report found that actual
measurements favored the theoretical computations rather than the FCC
curves.

The values computed by this program are also more accurate than the
curves adopted in 1985 [3] for the existing AM band. The present report
provides a history of FCC ground-wave curves and mathematical background
so that the situation can be critically evaluated if refinements in
accuracy become desirable.

FCC curves have been to some extent arbitrary b~cause they cannot be
reproduced by calculation from explicit formulas. "!tis difficult to
obtain consistent and repeatable results from the curves when
interpolation is necessary. However, any sufficiently precise way of
calculating the theoretical ground-wave field strength can be expected
to agree with the FCC computer program reported here. In particular, it
has been verified that the values computed by the FCC program agree with
results available through time-sharing services provided by the
Institute for Telecommunication Sciences of the U. S. Department of
Commerce (ITS). The ITS program was independently developed by Leslie
A. Berry approximately 10 years ago.

Propagation Model at Standard Broadcast Frequencies

The theoretical calculations that are"the principal subject of this
report assume a smooth, spherical earth with uniform dielectric constant
and conductivity. The dielectric constant and ground conductivity are
to be assigned values representing local conditions. The earth's radius
is assumed to be greater than its actual value by a factor of 4/3 to
account for atmospheric refraction. Both the transmitting antenna and
the receiver are assumed to be on the ground.



This model was the basis for the original FCC curves [4]. Those curves
were accompanied by text briefly describing the methods used to produce
them. Plane earth formulas published by Norton [5] were used for
sufficiently short distances such that the curvature of the earth does
not introduce additional attenuation. For larger distances, the
additional attenuation due to the curvature of the earth was introduced
by the methods outlined in papers by van der Pol and Bremmer.

Succeeding editions of the FCC rules have continued to cite the same set
of van der Pol and Bremmer papers [6,7,8,10] as the basis for the
ground-wave curves. Reference [9] is another in the sequence of papers
by these authors and is added to the list of referenceS here for
completeness. After World War II, Bremmer produced a book that includes
all the earlier material [11].

The CCIR has developed a refined model with a more general
characterization of the atmosphere [12]. The FCC model uses an
effective earth's radius, justified by assuming that the refractive
index of the atmosphere decreases with height in an approdmately linear
manner. The more general CCIR approach introduces methods for
calculating the effects of an exponentially varying atmosphere. CCIR
results are somewhat different from those of the FCC model at distances
of about 100 miles and beyond for standard broadcast frequencies. At
shorter distances where the curvature of the earth has a smaller effect,
the apparent modification of this curvature by atmospheric refraction is
a less critical part of the calculations. For such distances, results
of both models tend to be the same and do not depend on the exact values
specified in characterizing the atmosphere.

History of the Standard Broadcast Curves

Satisfactory field intensity curves for daytime standard broadcast were
originally produced after an intensive effort from about 1930 to 1940 by
radio engineers, mathematicians, physicists, broadcasters, the original
Federal Radio Commission and later the FCC. Extensive measurement
programs were conducted and a variety of empirical formulas were devised
and tested while exact solutions were being sought to the fundamental
mathematical equations.

Curves prepared by Rolf [13] in 1930 were based on prom1s1ng theory but
were actually misleading. Rolf relied on theoretical results pUblished
in 1909 by the physicist Arnold Sommerfeld [14], and these early results
contained an error. Correct expressions for the field of an antenna
over a flat earth had been worked out before 1930 by Sommerfeld himself
as well as others, but disagreement with the 1909 result had not been
noticed. Rolf used the earlier result thereby creating confusion.

For a time, measurements like those in the Kirby and Norton report [15]
were presented in relation to the Rolf curves although agreement was
poor. It was five years before the error in the theory of Rolf's graphs
was identified [16]. It was still later that an experiment was
conducted conclusively showing the theory to be wrong [17].
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The Radio Commission compiled empirical formulas and curves which were
published with its annual report [18] in 1931. The figure below is
reproduced from that annual report. It gives a good impression of the
prediction accuracies achievable in the early 193 Os. It appears from
subsequent annual reports of the Radio Commission that the curves in the
figure were used in hearings and allocation matters at least until 1933.
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-OBSERVED VAI-UES OF· FIEL.O INTENSITIES OF BROADCASTING STATIONS
(oBSERVATIONS MADE BY RADIO DIVISION, DEPARTMENT OF COIolUERCE)
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Figure reproduced
from annual
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Radio Commission
in 1931.
A single curve
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predicted ground
wave propagation
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fOr all types of
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As soon as the correct solution was identified, Norton [5] in 1936 was
able to construct a universal curve for prediction of field. strength at
relatively short distances. He was employed by the FCC at that time.
This universal curve appears even today in Sectiqn 73.184 of the FCC
rules as Graph 20, "Ground Wave Field Intensity versus NUlllerical
Distance over a Plane Earth."

Norton's universal curve represented a very big step forward because it
established a reliable theoretical basis .for estimating ground
conductivity in the vicinity of operating transmitters. Conductivity
data, in turn, permitted better cataloguing of propagation measurements
made at greater distances. The effects of the earth's curvature could
thereafter be examined separately from those of the ground constants.
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Also in 1936, Norton [5] provided. curves for greater distances in what
is called the diffraction region. Thes.e curves, however ,were based on
an incompletely developed theory. Mathematical solutions were being
developed in Europe, alld it took a few more years for that work to be
consolidated into engineering graphs. Other attem.pts to provide curves
prior to full development of the mathematics were those of Eckersley
[19] in 1932, the van del' Pol Committee [20] in 1932 (reported 1933),
and the Dellinger Committee [21] in 1933.

The FCC announced [22] in its annual report for 1938 that it was
beginning to prepare propagation prediction curveE! in conformity with a
new theory of ground-wave propagation developed by several investigators
in Europe. The necessary computations were made alld drafting procedures
were designed during the period 1938 through 1939. The curves, bearing
the date January 1940, were published as an appendix to the Stalldards
for Good Engineering Practice Concerning Standard Broadcast Stations
[4]. They have been used with little change ever since.

The 1940 curves were drawn by methods developed by Nortoll. He described
the calcula.tion procedures at an FCC hearing in March 1940 [23] and a
year later in February 1941 at the Fourth Annual Broadcast Engineering
Conference [24]. The text and graphs originally presented at the March
1940 FCC hearing were eventually published in the ProceediIlgs of the
Institute of Radio Engineers [25].

At the time of the 1940 curves it was not possible to calculate field
strengths over the entire range of distances of interest. Instead,
calculations were,made covering the range from the transmitter out to
about 50 miles and resuming again at greater distances (typically about
200 miles) depending on the frequency and ground constants. The middle
sections of the curves were estimates drawn to satisfy the overall
requirement of smoothness and guided by those values near the
transmitter and far away that could be calculated with greater accuracy.

It is interesting that the curves Norton presented to the 4th .NAB
convention at Columbus, Ohio a year later do not match those that were
added to the FCC rules. Comparisons with exact calculations show that
the curves put in the rules were slightly in error. The curve segments'
for great distances are systematically shifted upward. This may have
been an expedient to overcome the difficulty of drafting smoothly
fitting curve segments at illtermediate distances where lllathematical
computations were not practicaL The sea-water curves, for which the
intermediate distance problem is minimal, are quite accurate.
Inaccuracies in the 1940 curves are generally small in comparisoll to
prediction errors expected due to many uncertain physical factors in
real situations. However, the discrepancies were a concerIl of a
Canadian report of measurements on the Great Lakes in 1962 [2].

New curves were added in 1954 for very low conductivity. These are
quiteaccurate~ which might be explained by the fact that the drafting
job was not so huge as the earlier one and more care was exercised..
When the low-conductivity curves were added, freehalld drawing was still
necessary to join the Sommerfeld curve segment to the curve segment
calculated for the diffraction field at relatively great distances.
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The curves in the rules were considered satisfactory for regulatory
purposes until it became necessary to convert to metric units. In a
1979 FCC report, McMahon [26] described several methods for
recalculating the curves in order to convert to metric units. He
recommended that the method found in Bremmer's 1949 book [11] be used,
and he provided a computer program. The McMahon program was
subsequently used to produce new FCC curves in 1985 [3] which agree
within about 1 or 2 decibels with the previous curves in the rules.
Howe~er, the 1979 computer program is mathematically deficient in its
abit ity to cover all the range of intermediate distances, and the
great-distance values it computes are shifted upward to force a match in
the middle.

FCC curves drawn for the band 1605-1705 kHz are the most recent. They
are the result of precise calculations of field strength over the full
range of distances of interest, including the previously troublesome
intermediate distances. The theoretical model determining the values
calculated is that of a smooth spherical earth with an effective radius
4/3 larger than actual. Transmitting and recei~ing antennas are assumed
to be on the surface of the earth. The calculations are precise to at
least 3 significant decimal digits and within at most a few hundredths
of a decibel. This is substantially more precise than warranted by
considerations of prediction accuracy alone, but it is useful for
purposes of comparisons with calculation methods that may be developed
independently.

History of Ground-Wave Prediction Mathematics

Some general background on the theory is provided here to contribute to
an understanding of the computer program and make it easier to adapt the
calculation procedure for special applications. Amore complete review
with derivations of the important equations can be found in the paper
James R. Wait contributed to "Advances in Radio Research" [27].

The concept of numerical distance has been used in virtually every
treatment of ground-wave propagation since it was first introduced by
Prof. Arnold Sommerfeld in 1909 [14]. In his 1909 paper, Sommerfeld
showed how to calculate the attenuation of radio waves spreading out
from a vertical dipole mounted·on a flat earth of given electric
properties. The answer was conveniently expressed in terms of a
dimensionless quantity, the numerical distance. This quantity is
defined as the actual distance from the transmitting antenna measured in
wavelengths and multiplied by a factor involving the ground conductivity
and the dielectric constant of the ground relative to air.

Sommerfeld's results were ~or a flat earth, and they only apply
relatively near the transmitter. The ground-wave propagates beyond such
distances by diffraction, and there is a great amount of attenuation in
addition to that predicted by flat earth theory alone. The Watson
transformation, described in 1918 by G. N. Watson [281, was an essential
step for solution of the problem of the diffraction of radio waves
around the surface of the earth.
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The Watson transformation made possible the solution of qiffraction
problems in the previous ly difficult case in which the radius of
curvature of the obstacle is large in comparison to wavelength. This is
the case for the earth, which is tens of thousands of wavelengths in
diameter at standard broadcast frequencies. The scattering of radio
waves by a raindrop is the opposite type of problem and is solved
without the Watson transformation. In both cases the radio field is the
sum of a series of functions tailored to fit the geometry of a sphere,
but when that sphere is as large as the earth the number of terms that
have to be included is very large. The Watson transformation converts
the sum of this series to an integral for which there is a familiar
evaluation technique.

The Watson integral is a kind that can be evaluated asa sum of residues
of the integrand. The residues are associated with points in the
complex plane at which the integrand becomes infinite. These are poles
of the integrand,and the residues are easily calculated in the radio
diffraction problem as soon as these critical points in the complex
plane have been located. Watson found the poles and solved the radio
diffraction problem for the special case in which the earth is a perfect
conductor. This was useful in connection with maritime radio but gave
only an upper bound on the fields that could be expected over land.

Solution of the radio diffraction problem still awaited discovery of
practical procedures for finding the residue points that determine
propagation over the real, imperfectly conducting earth.
T. L. Eckersley [29] applied an interesting method to eva1~tion of the
Watson integral in about 1931. The Eckersley approach, however, did not
directly evaluate the residues. It was an approximate method that gave
the shape of curves representing field strength versus distance but
still required shifting of those curves vertically by an undetermined
amount. Eckersley suggested in 1934 [30] that his curves be shifted
vertically until they are tangent or nearly tangent to Sommerfeld's
curves. The results of making such a shift were examined in detail by
Charles R. Burrows [31] and by K. A. Norton [5].

The necessary procedures for locating the residue points of the radio
diffraction problem were developed between 1935 and 1938. B. WWedensky
[32] showed how to calculate the location of these points by what has
been called the "tangent approximation." Balthazar van derPol spoke
before the IRE in New York in November 1936 describing how to find the
residue points by the more accurate "Hankel approximation." Van der Pol
was speaking of results obtained by himself and H.Bremmer. Part I of
the van der Pol and Bremmer work was published in 1937 [6] and addressed
the two extreme cases of perfect reflection and negligible conductivity
at the surface of the earth. It appears from an FCC annual report [22]
that the Bucharest meeting of the CCIR in 1937 was an important occasion
for the exchange of information. The van der Pol and Bremmer paper
published in 1938 [9] was a complete solution of the radio diffraction
problem for propagation over electrically homogeneous spheres the size
of the earth.
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By 1940 the FCC,through the work 'of K. A. Norton [23], had developed a
practical method for constructing curves approximately representing the
theoretical predictions. The method \lsed the flat-earth theory of
Sommerfeld out to a distance of a.bout 80 kilometers, and the
diffraction-theory result was then used at those great distances where
it was sufficient to include only a single term in computing the sum of
the residues. Graphical techniques were used to co~plE'!te the curves at
intermediate distances.

George A. Hufford [33] in 1952 provided a .basis for unifying, the
ground-wave prediction methods of Sommerfeld with those developed from
the Watson transformation. The Huffor.d intE!gra1 eq\lation leads
immediately to a representation of the ground.-wav.e' field as a Laplace
transform, and the latter can .be invertE!d.by alternative methods
appropriate respectively for distances near and far from the
transmitter. Near the transmitter, the LaplacetransforIll is inverted .by
examining its asymptotic form for large values of its argument. For
distances relatively far from the transmitter, inversion of the Laplace
transform ~s equivalent to the usual sum of residues. In fact, in the
half-plane opposite the one in which the significant asymptotic
.behaviour occurs, the function to .be inverted has poles corresponding to
those that determine the residue series.

In deriving consequences of the unified representation arising from the
Hufford integral equation,Bremmer [34] identified correction terms
app1ica.b1e to the Sommerfeld flat-earth formula to account for the
effects of the earth's curvature. Bremmer's publication of these
correction terms in 1958 completed the search for practical formulas
engineers can use to calculate groundwave field strength. Previously
ther'.e was no alternative to .bold graphical interpolation in the
intE'!rmediate range of distances which for standard .broadcast frequencies
may extend from a.bout 50 to 300 kilometers (depending on the exact
frequency and the ground constants).

The Bremmer correction terms are needed even though it is now possi.b~e

with the help of a computer to include a large num.ber of terms in
summing the residue series. The num.ber of terms included 1!lust still .be,
limited to avoid an accumulation of errors. The formulas that use the
Bremmer correction terms are complimentary to residue series
computations. In the range where the same answer is obtained .by .both
methods, the faster method can be used. This is the technique used by
the FCC computer program descri.bed in this report.

The FCC Ground-wave Computer Program

The computer program. improves on previous graphical methods .by making
exact computations in the intermediate range of distances~ When the
residue series is used,as many terms are included as necessary rather
than just the one dominant at large distances. Closer to the
transmitter when there are too many terms in the residue series,
correction terms are added to the flat earth formula.
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The program is mathematically justified by the details collected in
Appendix A. Mathematical derivations are not repeated since they can be
found in a number of places, particularly WCiit [27]. Instead, Appendix
A identifies sources of the formulas that have been translated into
FORTRAN. The formulas are given in ordinary mathematical notation so
that their FORTRAN implementation can be examined critically. See Gerks
[35] for a detailed description of the development of a similar program.

Wherever possible the FORTRAN symbols chosen reflect the mathematical
notation used by Norton [25J. These symbols will be familiar to radio
engineers who prepare technical materials for filing with the FCC
because formulas involving these symbols have been 'included in FCC rules
since the Standards of Good Engineering Practice were first published in
1940.

Norton's symbols are supplemented by those used by Bremmer [11J. These
supplementary symbols have the same meanings as were attached to them in
the early van der Pol and Bremmer references [6,7,8,10J cited in FCC
rules as tbe basis for the curves. Many of them are complex-valued and
used in this form because the program can be written much more concisely
this way.

The program architecture is described by flow diagrams in Appendix B,
and the program itself is listed in Appendix C. The main program is
elementary. It operates interactively and demonstrates use of the two
major subroutines that actually determine ground-wave. attenuation in the
case of rellitively short distances and long distances respectively.

The program hssbeen used successfully on current-model microcomputers.
At distances less than about 80 kilometers where it is 1l0t necessary to
use the residue series, execution time is several seconds on the
microcomputers that have been tried. On these computers it takes about
1 second to locate a residue point. Up to 30 residue points may be
needed, but the computations necessary to locate these points are not
repeated so long as there is no change in frequency or ground constants
(that is, so long as the program is only being used to find the field
strength for a range of distances).

Independently developed software should produce results thCit match those
calculated by the FCC program to 3 significant decimal digits. Tbis
degree of precise match has been verified for the FCC program in
comparison with ITSGW, a program independently developed by the
Institute for Telecommunications Sciences of the Department of Commerce
some years ago.

Applications.

An important use of the FCC computer program is the prediction of field
strength for ground constants other than those represented in the family
of FCC curves. The ground dielectric constant, for example, may differ
from the standard value of 15. Currently, FCC rules in Section 73.184
explicitly state that engineering showings may ,be based on computer
program results in such circumstances.
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The program or combinations of its subroutines can be used for
analytical curve-fitting in place of older methods. When it is
suspected that ground constants differ from the usual assumptions and
thereby substantially affect radio service or interference, .it is common
practice to make field strength measurements. Subsequent estimates of
the true ground constants have in the past beep. made by graphical
techniques using, for example, the cumbersome method of matching
semi-transparent tracings over a light table as described in the FCC
rules. With a computer, analytical techniques using the FCC computer
program can be substituted.
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APPENDIX A

MATHEMATICAL BASIS

The major variables are identified in this appendix, and important
formulas are reproduced so that their translation into FORTRAN can be
examined critically.

This appendix also links the variables and formulas of the FCC
ground-wave computer program to technical publications lihere
definitions and mathematical derivations can be found. Four
references are needed:

K. A. Norton, "The Calculation of Ground-Wave Field Intensity
over a Finitely Conducting Spherical Earth", Proc~edings of the
IRE, December 1941, pages 623-639.

H•.Bremmer,Terrestrial Radio Waves, Elsevier Publishing Co.,
1949.

H./Bremmer, "Applications of Operational Calculus to Ground-wave
Propagation, Particularly for Long Waves", IRE Transactions on
Antennas and Propagation, Vol. AP-6, pages 267-272, July 1958.

M. Abramowitz and I. A. Stegun, ''Handbook of Mathematical
Functions", National Bureau of Standards Mathematics Series 55,
u.S. Gov. Printing Office, Orig. printing 196"4, ninth printing
1970 (also Dover Publications, N.Y., 1968).





USUAL NAME USED
MATH IN FORTRAN

VARIABLE SYMBOL PROGRAM

Ground a SIGMA
Conductivity

Relative EPSILON
Dielectric
Constant

Frequency f FREQ
I
I

Distance I d DIST
I
I

Magnitude of I p P
Numerical I
Distance I

I
I

Phase Angle I b B
of Numerical I
Distance I

I
I

Norton's "K" I K K
I
I
I
I
I
I

Bremmer's X I CHI
" " IX

I
I
I
I

Ground-wave f(p, b) I A
Attenuation etc. I

I
I
I
I

SIGNIFICANCE

Input variable. Units of
miUbiemens/meter.

Input variable. Measured
relative to air and
therefore dimensionless.

Input variable. Megahertz.

Input variable. Kilometers.

Numerical distance completely
determines the field attenua
tion for a flat earth.

Magnitude and angle of the
numerical distance given by
Norton 1941 equations 4 to 9.

Dependent on ratio of wave
length to earth radius. Used in
both short and long distance
calculations. Given by Norton
1941 equation 13.

Used in long distance calcula
tions. Proportional to
distance. Defined by Bremmer
1949 equation III-31.

Magnitude of the ratio of the
ground-wave field to the field
produced by the same antenna
over a perfectly conducting
flat earth.

Used by the main program in calls to first-level subroutines.

PRINCIPAL VARIABLES USED IN FCC GROUND-WAVE PROGRAM

Table A-I



DEFINITION I SIGNIFICANCE

Locations in the complex plane
at which to evaluate residues
in the special case of very
high conductivity (8~ co).

Locations in the complex plane
at which to evaluate residues
in special cases of very low
conductivity or very high
permittivity (8 - 0).

Magnitude~; phase b/2.
y7J=yp ex.p(jb/2)

Magnitude p;phase angle b.
p = p exp(jb)

Magnitude K; phase angle
135 degrees minus b/2.

8= K exp[j(37T/4 - b/2)]
Defined by Bremmer 1949,
equation 111-22.

These are the points in the
complex plane at which
residues of the diffraction
field integrand are to be
evaluated. Determined from
and either Ts 0 or Ts co. (below).,.. ,

TAUO

TAUl

DEL

RHOROOT

TAU ( S )

NAME USED
IN FORTRAN

PROGRAMVARIABLE

Complex
Numerical
Distance

, ,
, I
I MATH ,
I SYMBOL I------, '---...,..--- -------------I ,
'p ,, ,, ,

------, ,----- -----'----------I ,
I Square Root , Vii ,
, of Numerical' I
, Distance I I,------, ,------------------
I I'
, Bremmer's "8'" 8 I
I I'
, 'I
, I I

I ", I 1 '"- _

I I'
, Residue "s'
1 Points , I
, (numbered by' I
I s = 1, 2, •• ) , I

, ", 'I
1 ", 11----
, Residue "s,o 1
I points for I I
I strongly I I
I absorbing I ,
, earth I I
, 'I, I 1----
, Residue I's ,co ,

, points for 1 ,
, perfectly' ,
'conducting I .1
1 earth , I
I " _

Modern versions of FORTRAN will evaluate expressions involving
complex variables, and this capability allows the ground-wave
calculation procedure to be written much more cOncisely.

PRINCIPAL COMPLEX VARIABLES

Table A-2



QUANTITY

Numerical
Distance
(RHO)

FORMULA AND SOURCE

When the conductivity, u, is inmillisiemens/meter,
f is in Mhz, and the distance, d, is in the same
units as the wavelength, '\, define

x = 17.97 u/f, b''''= arctan( (Ix),
b" = arctan[( ( - l}/x1.

Then the complex numerical distance, p, is given by
p = p exp( jb)

where
b = 2b" - b' and
p = l7d cos 2 b" I (,\ x cos b' ).

SOURCE: Norton 1941, vertical polarization.

8 (DEL)

Flat-earth
Attenuation
(ZA)

When wavelength, ,\, and the effective earth radius,
a, are in the same units, define b, b' and b" as
above and let 1 1

K = [ ,\ 1(217a)1 /3 (x co.s b') /2 I cos b"
.t/J = b/2.

Then 8 = K exp[j(317/4 - t/J)1
I SOURCE : Norton 1941 equation 13a,
I Bremmer 1949 equation II~-29.

_______1 --.,;,, -- _

I
I Let p represent numerical distance as above and
I denote the complex attenuation by Za. Then

Za = 1 + j~e-P erfc( - j~)

= 1 + j.~ e-P - 2p + (2p}2/(l· 3)
- (2pP/O'3'5) + . .. .

= 1 + j.y1T'Pw(yp ) •
SOURCE: Norton 1941 equations 44 and 47,

Abramowitz equation 7.1.3

Adjusted Denote the adjusted value by Zadj , and let Za and
Flat-earth p respectively be flat-earth attenuation and
Attenuation numerical distance as above. Then Zadj=

I (ZADJ) I Za + [0 + 2p}Za - 1 - jy1Tp18 3 /2
I I + [(p2/2 - l}za + jV7TP(l- p) + 1 - 2p + 5 p:i/6]8~.
1 I SOURCE: Bremmer 1958 equation 24.

,---'------,---------------------
The effects of the curvature of the earth enter through the quantity 8.

FORMULAS FOR GROUND~WAVE ATTENUATION AT RELATIVELY SHORT DISTANCES

Table A-3



,,,,
I

let Ts
,

as I,
I
I,
I,

FORMULA AND SOURCE

rtl

Za =.y21TjX ~exp(jTs)() I [2Ts - O/B):!]

When wavelength, A, and the effective earth radius,
a, are in the same units as the distance, d, from
the transmitter 1

)( = (21Tal A ) /3 d Ia
SOURCE: Bremmer 1949, equation III-31.

SOURCE: Bremmer 1941 equation 1II-33.

Denote the complex attenu~tion .byZa , and
for s = 1, 2, ••• denote the residue points
above. Let B be as in table A-3. Then

When B is small, the points ~are found by power
series in B with coeffic.ients that ~re polynomials
in TAUO. Simil~r power series in q = lIB, with
coefficients determined by TAUl, are ~sed when B is
large. In between, the computer program finds
Tsbynumerical integration. See Table A-5.
SOURCE: Bremmer 1949, equations 111-27 and 28.

QUANTITY

)( (CHI)

Attenuation
in Diffraction
Region

Residue Points
(TAU)

Residue points
(TAUl) for
perfectly
conducting
earth

Residue points
(TAUO) for
strongly
absorbing
earth

,
I

-------,------'-------------------
I
I The residue points Ts 0 are equal to a constant
I factor time.s the zeroes of the Airy function. Let
, as denote th,ese zeroes ~s found in Table 10.13 and
, equation 10.4.94 of Abramowitz. Then
1 Ts,o= - as exp(j1T/3)/(2)Y3
, SOURCE: Bremmer 1949,. equations 1II-25a and 25b.

- I ---------------------~,
I The residue points TS,rtl are found in terms of the
, zeroes of the derivative of the Airy function. Let
, a~ denote these zeroes as found in Table 10.13 and
I equation 10.4.95 of Abramowitz. Then
, TS,rtl = -a~ exp(j1T13)/(2)1/3

, SOURCE: Bremmer 1949, equati~ns 1II-24a and 24b.

-------,-----------------~-'------
I,
1
I
1,,,
1-------.,-----------------------,,
I,,

- 1 -------------------
I,,
I,
1
I
I

- --_1 ------------------------

Bremmer's formulation numbers the residue points starting with s = 0,
but this convention is altered in the computer program in order to
associate TAUO and TAUI with the accurate tabulations of Abramowitz
which start with s = 1.

FORMULAS FOR GROUND-WAVE ATTENUATION AT RELATIVELY LONG DISTANCES

Table A-4



QUANTITY FORMULA

Coefficients
of Power
Series in 0,
for deter
miw.tion of
Ts when 0 is
small

Let Co = Ts,O. Then
where the next 10

c 1 = -1
c 2 = 0
c3= - 2co/3
C4 = 1/2
Cs = -4c~ /S

Let d = TS<Xl. Then Ts = do+ d1 q + d2q2+ d3q3+
where q =' 1/0 and coefficients after do are

d 1 = -1/ ( 2do )
d 2 = -1/(8dJ)
d 3 = -[1 + 3/(4d;)]/(12di)
d4 = -[0/3) + (S/4dg)]/(32d:)
ds = -lOIS) + 21/(40dJ) + 7/(32d;)]/(8dJ)
dB = -[ (29/4S) + 77/ (80d;) + 21/( 64d;)) /06d~)
d7 = -[(2/n + 76/(4Sdo

3) + 143/(80dg)
+ 33/(64d~)]/(32d~)

dB = -[(97/70) + 163/(40do
3) + 429/028d;)

+ 429/(S12d~)] f(64d~).

Coefficients
of Power
Series in
q = 1/0,
determining
Ts when 0 is
large

I
_____-I-.,.- ---~------

Bremmer's results (Bremmer 1949, equations 111-27 and 28) must be
extended in order to locate the residue points with a precision of 3
decimal digits. When 0 is either very small or very large in
magnitude, Bremmer's power series technique may be used except that
additional terms should be included in the respective power series.
In the intermediate region it is necessary to use numerical
integration.

The differential equation relating Ts to Ts•
O

is: dTs /dlJ = 1/(2lJ 2
Ts - O.

When 0 is such that neither power series is strongly convergent, Ts (0)
may be found by numerical integration of this equation starting with
Ts(O) = Ts,o.

The coefficients c 1 , C:u etc. are determined in terms of Co = Ts ° by
applying this differential equation to the power series ~ = '
co+ c1 0 + C202+ •••• The coefficients d1 , d 2,etc. are similarly
determined in terms of do = Ts . <Xl by this equa tion.Bremmer 1949 gives
only c 1 through Cs and d 1 through d4 , and the additional coefficients
tabulated above give improved accuracy and reduce the number of
situations in which numerical integration will be required.

EXTENSION OF RESULTS RELATING TO DETERMINATION OF Ts BY POWER SERIES

Table A-5





APPENDIX B

COMPUTER PROGRAM FLOW DIAGRAMS

Important features of the overall procedure are (1) the choice between
short-and long-distance subroutines and (2) the conversion of
attenuation to field strength.

The main program must choose whether to use the short-distance
subroutine, which computes the Sommerfeld flat-earth attenuation and
then corrects for earth curvature, or the subroutine for long
distances which involves an evaluation of the residue series. At very
short and very long distances there is a relatively little calculation
to be done and the subroutines work very fast. Either routine will
give an accurate answer in the intermediate range of distances, and
the best choice is the one that is fastest.

The output of both routines is the attenuation relative to an
inverse-distance field. This is converted to field strength by
multiplying by the reference field (100 mv/m) and dividing by the
given distance.
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100 MV/M AT 1 KM
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ACCEPT INPUT PARAMETERS:
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1
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Output of both the long and short distance calculations is the
attenuation~ A, the magnitude of the ratio of the ground~wave field
to the field of the same antenna over a perfectly conducting earth.

FLOW DIAGRAM FOR CALCULATION OF GROUND-WAVE FIELD STRENGTH

Figure B-1



FIND FLAT-EARTH
ATTENUATION BY

POWER SERIES
(Norton 1941,
equation 47)

EVALUATE ERFCBY
METHOD OF SALZER
(Abramowitz,
equation 7.1.29)

Note:
References Abramowitz, Bremmer 1958
and Norton 1941 are identified fully
in Appendix A.

I
I
I
I---_._---I

I ADJUST FOR EARTH
I CURVATURE BY POWER
I SERIES EQUIVALENT
I OF BREMMER FORMULA
,----.,.-----

yes

~""'---------'----------,.--

I...

Flat-earth
Attenuation =
1 + jy7ipw(V(j)

EVALUATEW-FUNCTION
FOR ARGUMENT WITH

LARGE MODULUS
(Abramowitz, p.328)

----,------ I
RETURN AMPLITUDE OF I
COMPLEX ATTENUATION I

I---------

C START),
--~~ ~~~---~.."..,............----D1S7 ~~~g:O ",\:y.no (inSilio) !

yes I I----, , ._---
I
I
I
I
I
I

-_---~ I---_._---I I
I Flat-earth I

., Attenuation = 1 + I
I j~e-Perfc(-j~) I
I I

----,-----

no I____'f _
I

APPLY CURVED EARTH I
CORRECTIONFORMULA I

(Bremmer 1958, I
equation 24) I

I---'----:-----

Find flat-earth attenuation and then correct for earth curvature.

CALCULATION OF FIELD STRENGTH FOR RELATIV~Y SHORT DISTANCES

Figure· B-2



I
.,....-__-i..~1 SET FLAG INDICATING NO
yes 1 RES IDUE PO INTS LOCATED

1...-..;,..__---.-----

-.,....-----j------
ENTER RESIDUE SUMMING LOOP

LOCATE
RES IDUE PO INT

EVALUATE RES IDUE AT
CURRENT PO INT IN

COMPLEX PLANE

. t _

ACCUMULATE RES IDUE SUM

yes

-------._--.,....-
RETURN AMPLITUDE OF
COMPLEX ATTENUATION

Residues of the diffraction field integralldare evaluated
starting with the pole nearest the origin and working outward
until the residue series converges.

FIELD STRENGTH CALCULATION FOR RELATIVELY LONG DISTANCES

Figure B-3





APPENDIX C

FORTRAN COMPUTER PROGRAM

The program and subprograms are identified below in groups. In the
first group are the main program and a module named, QUE1,{Y. These are
elementary programs for entering input and controlling the major
subroutines to obtain field-strength answers interactively.

The subroutine GWCONST converts input values of frequency, distance,
and ground constants to dimensionless quantities, e.g. the numerical
distance. All remaining calculations will be carried out in relation
to these dimensionless quantities.

SURFACE and the other subprograms of its group are used for
calculating ground-wave attenuation for relatively short distances.
These calculations begin by constructing complex-valued quantities
from the real values supplied.

RESIDUES is the lead subprogram of the group that makes the
appropriate calculations for greater distances. The task of locating
the residue points requires a relatively large number of FORTRAN
statements. Complex quantities are used, and many more statements
would be needed without the efficiency of complex notation.

Program/Subprogram

FCCGW.FOR
QUERY. FOR

GWCONST.FOR

SURFACE. FOR
SOMMERFLD.FOR
SALZER. FOR
SRSl.FOR
SRS2.FOR

RESIDUES. FOR
AIRYO.FOR
AIRYl.FOR

Description

Main program
Prompt for and accept inputs

Establish constants

Calculations by extended flat-earth theory
Find basic flat-earth field
Evaluate complex error function
First power series adjusting for curved earth
Power series to make second adjustment

Sum residues to evaluate diffraction field
Locate residue points of type 0
Locate residue points of type 1





PROGRAM FCCGW
C
C Calculate ground-wave field strength for vertic.ally
C polarized MF waves.
C

REAL K
CHARACTER*12 NAME( 2 )
DATA NAME / ' ADJ. SOMRFLD',

& 'RESIDUE SUM ' /
C

DATA SIGMA, EPS !LON, FREQ, DIST / 5., 15., ·.55,80. /
DATA PI / 3.1415927 /

C
C Define input and output units.
C

COMMON / INOUT / IN, 10
DATA IN, 10 / 5, 6 /

C
C Get input parameters.
C

10 CONTINUE
IQUIT = 0
WRITE ( IO, * )
CALL QUERY( 'Ground conductivity in mS/m', 27,

& SIGMA~ IQUIT )
IF ( IQUIT .GT. 0 ) STOP 'Stopped on CNTRL-Z'
CALL QUERY( 'Dielectric constant relative to air " 35,

& EPSILON, IQUIT )
IF ( IQUIT .GT. 0 ) GOTO 10
CALL QUERY( 'Frequency in MHz', 16, FREQ, IQUIT )
IF ( IQUIT • GT. 0 ) GOTO 10
CALL QUERY( 'Distance in km', 14, DIST, IQUIT )
IF ( lQUIT .GT. 0 ) GOTO 10

C
C Show parameters accepted.
C

WRITE ( 10, 1000 )
& 'At', DIST, ' km',
& 'for ground conductivity = ,SIGMA,' mS/m,',
& 'dielectric constant = " EPSILON,
& 'and frequency = " FREQ, ' MHz:'

C
C Evaluate constants required by major subroutines.
C

.CALL GWCONST(
& SIGMA, EPSILON, FREQ, DIST,
& P, R, K, CHI )

C
C Set distance beyond which to use residue series.
C

FAR = 80 / FREQ ** .3333

FCCGW-l

!Given
!Find



C
C Calculate ground-wave attenuation by approriate method.
C

IF ( DIST .LE. FAR) THEN
METHOD = 1
CALL SURFACE( P, B, K, A )

ELSE
METHOD = 2
PSI = 0.5 * B
CALL RESIDUES( CHI, K, PSI, A )

END IF
C
C Multiply inverse-distance field (lOOmv/mat I km) by
C the attenuation.
C

FIELD = A * 100 1 DIST
C
C Show answer and loop for another set of inputs.
C

WRITE ( 10, 1001 )
WRITE ( 10, 1002 ) NAME ( METHOD ), FIELD
GOTO 10

C
1000 FORMAT( 11X, A, F6.1, A IlX, A, F7.2, A IIX, A, F5.2,

& IIX, A,F8.4, A )
1001 FORMAT( 1

& 4X, 'MEtHOD', 9X, 'FIELD (mVlm)'1
& 4X, ' ----.,..- " 9X, ' ----.:..--------' )

1002 FORMAT( IX, A,5X, 1PG9.3)
C

END

FCCGW-2



C
C***********************************************************
C
C QUERY - Prompt for input and accept real number. Up to
C 50 characters are allowed for description of the parameter
C to be. entered. The description is provided in the string
C PROMPT in which characters 1 through LENGTH are si,gnificant.
C
c***********************************************************
C

SUBROUTINE QUERY( PROMPT, LENGTH, VALUE, IQUIT )
C

CHARACTER PROMPT*SO, ANSWER*S
CHARACTER STRING*SO

C
C Provide character-by-character access to STRING and ANSWER by .
C making them equivalent to arrays LINE and WORD respectively.
C

CHARACTER*l LINE(SO), WORD(S)
EQUIVALENCE ( LINE, STRING )
EQUIVALENCE ( WORD, ANSWER )

c
C Calling program must identify input and output devices by
C filling in common block INOUT.
C

COMMON I INOUT I IN, 10
C
C Compose the prompting message. Erase characters that
C came from the string PROMPT but are beyond its actual
C length.
C

WRITE ( STRING, '(ASO, A, 1PG12.6, A)' ) PROMPT,
& ' = [', VALUE, 'l? '

DO 10 I = LENGTH + 1, 50
LINE( I ) = ' ,

10 CONTINUE
C
C Remove extra spaces and find last non-blank character.
C

L = SO
DO 100 I = LENGTH + 1, 79

IF ( I .GT. L - 1 ) GOTO 200
20 IF ( LINE( I ) .EQ. ' , .AND. LINE( 1+1 ) .EQ. ' , ) THEN

L = L - 1
IF ( I .GE. L ) GOTO 200
DO 30 J = I, L

LINE( J ) =LINE( J+1 )
30 CONTINUE

GOTO 20
END IF

100 CONTINUE

FCCGW-3



C
C Issue prompt.
C

200 WRITE ( ro, * ) ( LINE( I ), I = 1, L)
C
C Accept answer in character form.
C

READ ( IN, '( A )', ERR = 410, END = 400 ) ANSWER
IF ( ANSWER .NE. ' ') GOTO 300

C
C Nothing typed except ENTER key. Return without changing the
C argument VALUE so that calling routine may use ~e£ault.

C
RETURN

C
C Something typed in. Right justify it.
C

300 IF ( WORD( 8 ) .NE. ' , ) GO TO 320
DO 310 I = 7, 1, -1

WORD( 1+1 ) = WORD( I )
310 CONTINUE

WORD ( 1 ) =
GO TO 300

C
C Decode and exit.
C

320 READ ( ANSWER, '(Fa.O)', ERR = 410 ) VALUE
C

RETURN
C
C Exit on Control-Z or read error.
C

400 IQUIT = 1
RETURN

C
410 STOP 'Error in subroutine QUERY'

C
END

FCCGW-4
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B, phase angle of the numerical distance

Quantities calculated in this subroutine and returned are:

H. Bremmer, Terrestrial Radio Waves, Elsevier
Publishing Co., 1949.

Use of the symbols P and B for the amplitude and phase of
the numerical distance follows Norton, Proc. IRE 1941.

K. A. Norton, "The Calculation of Ground-Wave Field
Intensity over a Finitely Conducting Spherical Earth", .
Proc. IRE, Dec 1941, pages 623-639.

K, a dimensionless parameter proportional to the cube
root of the ratio of wavelength to the effective earth
radius, and dependent also upon the ground constants

CHI, a dimensionless parameter proportional to the cube
root of the effective earth radius. measured in wavelengths,
and prop<;>rtional also to the radio pa th distance measured
as the angle subtended from the center of the earth.

P, amplitude of the complex numerical distance introduced
for the solution of radio propagation problems by Arnold
Sommerfeld in 1909

SIGMA, the ground ~onductivity in miUisiemehs/meter
EPSILON, the relative dielectric constant 0.0 for air)
FREQ, the frequency in MHz
DIST, radio path length in kilometers

CHI is used in evaluating the residue series. The Greek letter
of that name was used for this quantity by Bremmer in his 1949
book.

The symbol K is used to denote exactly the same quantity in
NBS Tech Note 101, in Norton's 1941 IRE paper and in the
1949 book by Bremmer. See references below.

GWCONST - Set groundwave constants. The independent variables
passed as arguments of this subroutine are:

C

C*************************************************************
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C References:
C
C
C
C
C
C
C
C
C*************************************************************
C

SUBROUTINE GWCONST(
& SIGMA, EPSILON, FREQ, DIST,
& P, B, K, CHI )

!Given
!Find
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C
REAL K

C
DATA PI / 3.1415927 /
DATA EARTHRAD / 6370. /
DATA FACTOR / 1.333333 /

!Radius of the earth, kin
!Assumed effective radius factor

C
C Speeci of light in air (refractive index 1.00031)
C

DATA SPEED / 299700. / Jkm/second
C ,
C Begin execution. Determine effective earth radius from
C given earth radius factor.
C

EFFRAD = FACTOR * EARTHRAD
'C
C Find wavelength. Distance and the effective earth radius will
C be divided by wavelength to produce dimensionless quantities.
C

WAVELENGTH = SPEED / ( 1E6 * FREQ ) !km
C
C Intermediate variables X, B1 and B2 are derived from the
C ground constants by formulas that appear in Norton, Proc.
C IRE, 1941.
C

X = 17 .97 * SIGMA / FREQ
B1 = ATAN2( EPSILON - 1, X )
B2 = ATAN2( EPSILON, X)

C
C Calculation of numerical distance, P, and its phase angle, B
C

P = PI * ( DIST / WAVELENGTH )* COS( B2 )** 2
& / ( X * COS( B1 ) )

B = 2 * B2 - B1
C
C Calculation of K. See Norton, Proc. IRE, Dec 1941, page 628.
C

K = ( WAVELENGTH /
& (2 * PI * EFFRAD ) ) ** ( 1./3 )
& * SQRT( X* COS( Bl ) ) / COS( B2 )

C
C Calculation of CHI. Confer Bremmer, Terrestrial Radio Waves,
Cpage 49, equation (III, 31).
C

CHI = D!ST / EFFRAD *
& (2 * PI * EFFRAD / WAVELENGTH) ** (1./3)

C
RETURN
END
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Output is the attenuation factor, A, the magnitude of the
ratio of. the ground~wave field to the field produced by
the same antenna over a perfectly conducting flat earth.

Inputs are the numerical distance, P, its phase, B, and
the parameter K. The parameter K (so denoted by' Norton
and in NBS Tech Note 101) carries information concerning
the effective earth radius so that spherical earth
corrections can be applied.

SURFACE - Calculation of surface wave attenuation. The
flat earth value is found by the usual formula due to A.
Sommerfeld. Corrections for curved earth are then applied.
The curved earth corrections are from H. Bremmer, "Applications
of Operational Calculus to Ground-Wave Propagation,
Particularly for LOlig Waves", IRE Transactions on Antennas
and Propagation, July 1958.

Spherical earth correction formulas. Use when numerical
di$tance is not close to O. Notice formulas are in cascade
so that the last automatically uses those previous. They
are written this way so that they can be examined separately,
but direct reference in the program is made only to
the last formula.

C
C***********************************************************
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C***********************************************************
C

SUBROUTINE SURFACE ( P, B, K, A )
C

IMPLICIT COMPLEX ( Z )
COMPLEX' DEL, RHO, ERFC, SRS1, SRS2
REAL K

C
DATA PI / 3.1415927 /

C
C
C
C
C
C
C
C
C ZA denotes the Somm~rfeld flat-earth attenuation which must
C be calculated separately.
C

ZADJ1( DEL, RHO, ZA ) = ZA
& + DEL ** 3 * .
& 1./2 * ( ( 1 + 2 * RHO ) * ZA
& - 1 - (0,1) * SQRT( PI * RHO ) )

.C
ZADJ2( DEL, RHO, ZA ) =ZADJ1( DEL, RHO, ZA )

& + DEL ** 6 *
& ( (.1./2 * RHO ** 2 - 1 ) * ZA
& + (0,1) * SQRT( PI * RHO ) * ( 1 - RHO )
& + 1 - 2 * RHO + 5./6 * RHO** 2 )
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C
C Begin execution. Convert input variables P t B to complex form.
C The resulting complex variable,RHO, will always be in the
C upper half-plane.
C

RHO = P * ( COS( B ) + (0,1) * SIN( B ) )
C
C The complex parameter DEL is determined by 1{ and the angle B.
C

DEL = K *
& (COS( 3*PI/4 - B/2 ) + (0,1) * SIN( 3*PI/4 - B/2 ) )

C
C Find complex attenuation for flat earth
C

CALL SOMMERFLD( RHO, ZA )
C
C Adjust for spherical earth. The functions SRS! and SR2 are
C power series corresponding to ZADJI and ZADJ2 respectively.
C When RHO is small and consequently ZA is near unity, the power
C series must be used. ZADJI and ZADJ.2 are not accurate under
C these conditions because the formulas involve the difference
C between ZA and a number near unity.
C

IF ( ABS( RHO ) .GT. 0.5 ) THEN
ZADJ = ZADJ2( DEL, RHO, ZA )

ELSE
Zl ,,; (0,1)* SQRT(RHO )
Z3 = (DEL * Z1 ) ** 3
ZADJ = ZA - Z3 * ( SRSl( Zl )

& - Z3 * ( SRS2 ( Zl ) »
END IF

C
C Return the amplitude
C

A = ABS( ZADJ )
RETURN

C
END
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Input is the numerical distance in co~plex form, RHO.

Output ZA is the complex surface wave attenuation factor
for a flat earth.

SOMMERFLD- Calculation of the surface wave attenuation
factor for given "numerical dfstance". Numerical
distance is the parameter introduced by A. Sommerfeld
in 1909 when he show.ed how to find the field of a short
dipole radiating over a finitely conducting plane earth.

C
C***********************************************************
C
C
C
C
C
C
C
C
C
C
C
C
C***********************************************************
C

SUBROUTINE SOMMERFLD( RHO, ZA )
C

IMPLICIT COMPLEX ( S, T, W, Z )
COMPLEX ERFC, RHO, RHOROOT

C
DATA PI I 3.1415927 I

C
C Coefficients Cl, Dl etc. to. approximate w-function of
C large modulus (M. Abramowitz and I. Stegun, Handbook of
C Mathematical Functions, National Bureau of Standards,
C 1964, page 328).
C

DATA Cl, C2, C3 I 0.4613135, 0.09999216, 0.002883894 I
DATA Dl, D2, D3 I 0.1901635, 1.7844927, 5.5253437 I

C
C Approximation formula for w-function of large modulus.
C Error less than 2 parts in lE6 provided the abso.lute
C value of X exceeds 3.9, or Y > 3.
C

&
&
&

W( Z ) = (0,0 * Z *
( Cl I ( Z ** 2 - Dl )

+ C2 I ( Z ** 2 - D2 )
+ C3 I ( Z ** 2 - D3 ) )

C
C Begin execution. The numerical distance, as a complex
C variable, should always be found in the upper half-plane.
C Calculate its square root, RHOROOT, which will be located in the
C first quadrant.
C

IF ( AIMAG( RHO ) .LT. 0 ) STOP
& 'ERROR: Complex numerical distance in lower half-plane'

RHOROQT = SQRT( RHO )
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C
C Determine most appropriate method.
C

IF ( REAL ( RHOROOT ) .GT. 3.9
& .OR. AIMAG( RHOROOT ) .GT. 3.0 ) GO TO 300

IF ( ABS( RHOROoT ) .GT. 1 ) GO ';to 200
C
C Power series for small RHO. For ABS( RHO) = 1 or less,
C the I-th term will be less than lE-35 in magnitude after
C 33 terms.
C

300 CONTINUE
ZA = 1 + (0,1) * SQRT( PI * RHO ) * W( RHOROOT )
RETURN

C
END
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SALZER - Compute the complementary error function of
the complex argument, Z, using the methoddescri~ed by
H. E. Salzer, Formulas for Calculating the Error Function
of a Complex Variable, Math. Tables and Other Aids to
Computation (journal published by NationalR.esearch Council),
Vol. V, 1951. The formulas also appear in Abramowitz and
Stegun, page 299.

C
C*******************************************************
C
C
C
C
C
C
C
C
C
C*******************************************************
C .

FUNCTION SALZER( Z )
C

IMPLICIT COMPLEX ( S, Z )
COMPLEX TEST

C
COMMON I INOUT I IN, 10
DATA PI I 3.1415927 I

C
C Coefficients P, and AI, A2, etc. to approximate error
C function of real argument (C. Hastings , Approximations
C for Digital Computers, PrincetonUniv. Press, 1955 )
C

DATA P, AI, A2, A3, A4, AS I 0.3275911, 0.2548296,
& -0.2844967, 1.4214137, -1.4531520, 1.0614054 I

C
C Approximation of complementary error function for real,
C non-negative arguments
C

T( X ) = 1 I ( 1 + P * X )
REALERFC ( X ) =

& T( X ) *
& ( Al + T( X ) *
& ( A2 + T( X ) *
& ( A3 + T( X ) *
& ( A4 + T( X ) *
& ( A5 »»)
& * EXP( - X ** 2 )

C
C Functions for approximating ERF of complex arguments.
C
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Y = AIMAG( Z )
SUM = 0
IF ( Y .EQ. 0 ) GO TO 20

N = MIN( ABS( 80!Y ), 50. )
DO 10 1 = 1, N

SUM = SUM +EXP( - .25* ( I ** 2 ) )
* ( F( X, Y, I ) + (0,1) * G( X, Y, I ) )
! ( 1** 2 + 4.0 * X ** 2 )

IF ( 1.GT. 1 .AND.
ABS( SUM - TEST ) .LT. ABS( TEST ) ! 1E5 )
GO TO 20

TEST = SUM
CONTINUE
WRITE ( 10, * )

'Unexpected error: Salzer series failed to converge'

&
&

&
&

10

&
C

20

&
&
&

C

CONTINUE
SALZER = - 2 * EXP( - X ** 2 ) * SUM! PI
IF ( X .NE. O. )

SALZER = SALZER - EXP( - X ** 2 ) *
( 1 - COS( 2 * X * Y ) + (0,1) * SIN( 2 * X * Y ) ) !
( 2* PI * X )

C
C When called to aid evaluation of the Sommerfeld complex
C surface wave attenuation, the variable Z will be in the
C 4th quadrant. Additional provisionis made below to
C return the value of the complementary error function
C independent of what quadrant Z is in.
C

IF ( X •GE.O. ) THEN
SALZER = SALZER + REALERFC( X )

ELSE
SALZER = SALZER + 2 - REALERFC( -X )

END IF
RETURN

C
END
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The input is a single complex value, and the output is
also complex. .

SRSI - Compute the first of two power series associated
with correction terms to the complex surface wave
attenuation. An effective earth radius factor is needed
to apply the correctioIl, and the apPl."opriate factor is
applied to the sum of the power series addressed by this
subprogram.

C

C*******************************************************
C
C
C
C
C
C
C
C
C
C
C
C*******************************************************
C

FUNCTION SRSl( Z )
C

IMPLICIT COMPLEX ( S, T, Z )
COMPLEX ODDTERM, EVENTERM

C

C

C

C

COMMON I INOUT I IN, 10
DATA PI I 3.1415927 I

ODDTERM = 4 * Z I ( 3 * SQRT( pI ) )
EVENTERM = 1
SUM = 1 + 2 * ODDTERM
DO 1001 = 2, 50

IF ( MOD( I, 2 ) .EQ. 0 ) THEN
EVENTERM = 2 * EVENTERM * Z ** 2 I ( I + 2 )
TERM = EVENTERM

ELSE
ODDTERM = 2 * ODDTERM * Z ** 2 I (I + 2 )
TERM = ODDTERM

END IF
SUM = SUM + ( I + 1 ) * TERM
IF ( I • GT. 2 .AND.

& ABS( SUM - TEST ) .LT. ABS( TEST) I lE6 )
& GO TO 110

TEST = SUM
100 CONTINUE

WRITE ( 10, * ) 'Slow convergence in series l'

110 SRSI = SUM * SQRT( PI ) I 2
RETURN

END
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SRS2 - Compute the second of two power series associated
with correction terms to the complex surface wave
attenuation. An effective earth radius factor is needed
to apply the correction, and the appropriate factor is
applied to the sum of the power series addressed by this
subprogram..

C
C*******************************************************
C
C
C
C
C
C
C
C
C The input is a single complex value, and the output is
C also complex.
C
C*******************************************************
C

FUNCTION SRS2( Z )
C

C

C

C

C

IMPLICIT COMPLEX ( S, T, Z )
COMPLEX ODDTERM, EVENTERM

COMMON ! INOUT ! IN, 10
DATA PI ! 3.1415927 !

EVENTERM = 8 ! ( 15 * SQRT( PI ) )
ODDTERM = Z ! 6
SUM = 7 * EVENTERM + 2 * 8 * ODDTERM
DO 200 I = 2, 50

IF (MOD( I, 2 ) .EQ. 0 ) THEN
EVENTERM = 2 * EVENTERM * Z **2 ! ( I + 5 )
TERM = EVENTERM

ELSE
ODDTERM = 2 * ODDTERM * Z ** 2 !( I + 5 )
TERM = ODDTERM

END IF
SUM = SUM + ( I + 1 ) * ( I + 7 ) * TERM
IF ( I .GT. 2 .AND.

& ABS( SUM - TEST) .LT. ABS( TEST) ! iE6 )
& GO TO 210

TEST = SUM
200 CONTINUE

WRITE ( 10, * ) 'Slow convergence in series 2'

210 SRS2 = SUM * SQRT{ PI ) ! 8
RETURN

END
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RESIDUES - Calculation of diffraction loss over smooth
finitely conducting earth using residue series

The computations follow the method outlined by H. Br~er,

terrestia1 Radio Waves, Elsevier Publishing Co., 1949.

C

C***********************************************************
C
C
C
C
C
C
C

C***********************************************************
C

C

SUBROUTINE RES IDUES( CHI, K, PSI,
& ATTENUATION )

IMPLICIT COMPLEX ( C, D, Q, T, Z )
REAL K, CHI
INTEGER S
PARAMETER ( MAXTERMS = 30 )

IGiven
IFind

The required ,roots of the Airy function and .its derivative
are found by FUNCTION AIRYO and FUNCTION AIRY1 respectively~

C
C TAU(S) denotes the points in the complex plane at which
C residues of the diffraction field integrand are to be
C evaluated.
C

DIMENS ION TAU ( MAXTERMS )
C
C No need to reca1au1ate residue points if no change in DEL.
C

COMMON / SAVE /DEL,QSQR, TAU, NUMPOINTS
SAVE / SAVE /

C
C MAXTERMS refers to how many terms may be included in the
C residue series. The number actually included will be
C determined by a convergence criterion represented by the
C parameter PRECISION.
C

DATA PRECISION / 1E-4 /
C
C FINENESS determines the size of the element of integration
C used to locate residue points.
C

DATA FINENESS / 0.05 /
DATA PI / 3.1415927 /

C
C TAUO and TAU1 denote reference points where residues
C would be evaluated in certain limiting cases. These
C reference points are all in the first quadrant on the line
C of slope 60 degrees. The amplitudes of the complex numbers
C representing reference points TAU0 and TAU1 ate determined
C from the amplitudes of corresponding roots of the Airy
C function and its derivative.
C
C
C
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C
C Function producing TAUO or TAU1 from the amplitude
C AlRYO or AlRY1:
C

TFN( AlRY ) = AlRY / 2 ** ( 1./3) * EXP( (0,1) * Pl/3 )
C
C Functions for finding points TAU, at which reddues
C are evaluated, from the reference pointsTAUO. These
C formulas are used when DEL is small.
C

C3 (TAU) = -2./3 * TAU
C5 ( TAU ) = -4./5 * TAU ** 2
C6 ( TAU) = 14./9* TAU
C7 ( TAU ) = - ( 5 + 8 * TAU ** 3 ) / 7
C8 ( TAU) = 58./15 * TAU ** 2
C9 ( TAU) = - TAU * ( 2296./567 + 16/9 * TAU ** 3 )
C10( TAU) = 47./35 + 4656/525 * TAU ** 3

C
TAUFNO( TAU, DEL ) =

& TAU + DEL *
& ( - 1 + DEL *
& ( 0 + DEL *
& ( C3 ( TAU ) + DEL *
& ( 1./2 + DEL *
& ( C5 ( TAU ) + DEL *
& ( 06 ( TAU ) + DEL *
& ( C7 ( TAU ) + DEL *
& ( C8 ( TAU ) + DEL *
& ( C9 ( TAU ) + DEL *
& ( C10( TAU ) »»»»»

C
C Functions for finding TAU from TAUI. Used when DEL
C is large after setting Q = l/DEL.
C

Dl( TAU ) = - 1 / ( 2 *·TAU )
D2( TAU ) = - 1 / ( 8 * TAU ** 3 )
D3( TAU ) = - 1 / ( TAU ** 2 ) *

& ( 1./12 + 1 / ( 16 * TAU ** 3 ) )
D4( TAU ) = - 1 / ( TAU ** 4 ) *

& ( 7./ 96 + 5 / ( 128 * TAU ** 3 ) )
D5( TAU ) = - 1 / ( TAU ** 3 ) *

& ( 1./ 40 + 1 / ( TAU ** 3 ) *
& ( 21./320 + 7 / ( 256 * TAU ** 3 ) »

D6( TAU· ) = - 1 / ( TAU ** 5 ) *
& ( 29./ 720 + 1 / ( TAU ** 3 ) *
& ( 77 ./1280 + 21 / ( 1024* TAU ** 3 ) »

D7( TAU ) = - 1 / ( TAU ** 4 ) *
& ( 1./ 112 + 1 / ( TAU ** 3 ) *
& ( 19./ 360 + 1 / ( TAU ** 3 ) *
& ( 143./2560 + 33 / ( 2048 * TAU ** 3 ) »)

D8( TAU ) = - 1 / ( TAU ** 6 ) *
& ( 97./4480 + 1 / ( TAU ** 3 ) *
& ( 163./2560 + 1 / ( TAU ** 3) *
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C
& (429./8192 + 429 1 ( 32768 * TAU ** 3 ) »)

TAUFNl(TAU, Q ) =
& TAU + Q *
& ( Dl( TAU ) + Q *
& ( D2( TAU ) + Q *
& ( D3( TAU ) + Q *
& ( D4( TAU ) + Q *
& ( D5( TAU ) + Q *
& ( D6( TAU ) + Q *
& ( D7( TAU ) + Q *
& ( D8( TAU) »»»»

C
C Formula for finding TAU by integration
C

DELTAU( TAU, DEL, DELDEL ) =
& DELDEL 1 ( 2 * TAU * DEL ** 2 - 1 )

C
C Begin execution. Define quantities that will be used
C repeatedly in the residue summing loop.
C

DELNEW = K * EXP( (0,1) * ( 3*PI/4 - PSI) )
IF ( DELNEW .NE. DEL ) THEN

DEL = DELNEW
QSQR = ( I 1 DEL ) ** 2
NUMPOINTS = 0

END IF
C
C Clear the variable used to accumulate the residue sum, and
C initialize variable used to test convergence.
C

ZS = 0
TEST = 0

C
C Begin calculation of sum of residues. If the S-th residue
C point been located by a previous call to this subroutine,
C jump past the calculation of TAU(S).
C

DO 100 S = I, MAx.TERMS
IF ( S •LE. NUMPOINTS ) GO TO 90

C
C Find TAU(S) from TAUO if K is small, or from TAUI if K is
C large. For intermediate values of K, accuracy requires an
C integration procedure.
C

TAUO = TFN(AIRYO( S ) )
TAUI = TFN( AIRYI( S ) )
IF ( ABS( TAUO * K ** 2 ) •LT. 0 .25 ) THEN

TAU ( S.) = TAUFNO( TAUO, DEL )
ELSE IF ( ABS( TAUI * K ** 2 ) .GT. 1.0 ) THEN

TAU ( S ) = TAUFNl( TAUI, I/DEL )
ELSE,

T = TAUO
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N = MAX( ABS( DEL ) / FINENESS, 2.0 )
DELDEL = DEL / N

C
C Integrate along a diagonal path in the complex DEL-plane
C using a fourth-order Runge-Kutta method. The variable of
C integration, DELI, runs from 0 to DEL.
C

DELl = 0
DO 80 I = 1, N

TK1 = DELTAU( T, DELl, DELDEL )
DELl = DELl + DELDEL/2
TK2 =DELTAU( T + TKI/2, DELI, DELPEL )
TK3 = DELTAU ( T + TK2/2, DELI, DELDEL )
DELl = DELl + DELDEL/2
TK4 = DELTAU( T + TK3, DELl, DELDEL )
T = T + ( TK1 + 2 * TK2+ 2 * TK3 + TK4 ) / 6

80 CONTINUE
TAU(S) = T

END IF
C
C Remember how many residue points pave been located. This
C permits reuse of this subroutine without recalculation of
C TAU(S) so long as the value of DEL remains unchanged, that
C is for changes in distance only.
C

NUMPOINTS = S
c
C Evaluate residue at TAU ( S).
C

90 CONTINUE
Z = EXP ( ( 0, 1) * TAU ( S) * CHI ) /

& ( 2 * TAU(S) - QSQR )
C
C Accumulate and loop to calculate next residue until
C test indicates convergence is satisfactory.
C

ZS = Zs + Z
IF ( ABS( ZS - TEST) .LT. PRECISION * ABS( TEST) )

& GO TO 200
TEST = ZS

100 CONTINUE
C
C Exit with diffraction loss determined from sum of residues.
C

200 CONTINUE
ATTENUATION = ABS( ZS) * SQRT( 2 *PI * CHI )
RETURN

C
END
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C

C***********************************************************
C
C AIRYO - Locate the zeroes of the Airy function.
C
C The zeroes of interest are located on the neg~tive real
C axis, ~nd this subprogram returns positive values equal
C to minus the x-coordinates of these zeroes.
C
C The first 10 values of AIRYO are those t~bulated in
C Abramowitz and Stegun, Handbook of Functions, page 478;
C values for indices larger than 10 are calculate4· using
C equations 00.4.94) etc. on page 450 of the same reference.
C

C***********************************************************
C

4.0879494, 5.5205598, 6.7867081,
9.0226508, 10.0401743, 11.0085243,

12.8287767 I

C

C

&
&
&

FUNCTION AIRYO( S )

DIMENSION AO( 10 )
INTEGER S
DATA PI I 3.1415927 I

DATA AO I
2.3381074,
7.9441336,

11.9360156,
C
C Formulas used to calculate the amplitudesAO( S ) for
C indices greater than 10.
C

c.

C

C

X( S ) = 3 * PI * ( 4 * S - 1 ) I 8
F( X ) = X ** (2./3) * ( 1+ 5.148 * O/x) ** 2 )

IF ( S • LE. 10 ) THEN
AIRYO = AO( S )

ELSE
AIRYO = F( X( S ) )

END IF
RETURN

END
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The zeroes of interest are located on the negative real
axis, and this subprogram returns positive values equal
to minus the x-coordinates of these zeroes.

The first 10 values of AIRY1 are those tabulated in
Abramowitz and Stegun, Randbook of Functions, page 478;
values for indices larger than 10 are calculated using
equations 00.4.94) etc. on page 450 of thes.ame reference.

c
c***********************************************************
c
C AIRY1 - Locate the zeroes of the derivative of the Airy
C function.
C
C
C
C
C
C
C
C
C
C

c***********************************************************
C

FUNCTION AIRYl( S )
C

c·

r·

3.2481976, 4.8200992, 6.1633074,
8.4884867, 9.5.354491, 10.5276604,

12.3847884 I

C

&
&
&

DIMENSION A1( 10 )
INTEGER S
DATA PI I 3.1415927 I

DATA Al I
1.0187930,
7.3721773,

11.4750566,
C
C Formulas used to calculate the amplitudes AI( S ) for
C indices greater than 10.
C

y( S ) =3 * PI * ( 4 * S-3 ) 1 8
G( Y ) = Y ** (2./3) * ( 1 - 1.148 * (l/Y) ** 2 )

C
IF ( S .LE. 10 ) THEN

AIRY1 = Al( S )
ELSE

AIRY1 = G( y( S ) )
END IF
RETURN

C
END
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